A Physically-Based Electron Mobility Model for Silicon Device Simulation

نویسندگان

  • G. Kaiblinger-Grujin
  • T. Grasser
چکیده

We present an analytical low-field electron mobility formula for silicon which treats the dependence on all common dopants, such as P, As, Sb, and B in a unified manner. The expressions are derived from Monte-Carlo (MC) calculations which are based on a theoretical approach to ionized impurity scattering that inherently distinguishes the dopant species. From these first principle data we derive analytical expressions for the majority and minority mobility valid in the temperature range (70-500 K) and up to an impurity concentration of 10 cm . The agreement with experimental data is excellent. Not only the lower majority electron mobility in Asand Sb-doped Si, but also the higher minority electron mobility in B-doped Si compared to the majority mobility is confirmed. Hence, this universally usable mobility model is very well suited for device simulation purposes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Physically-Based Electron Mobility Model for Strained Si Devices

A model describing the mobility tensor for electrons in strained Si layers as a function of strain is presented. It includes the effect of strain-induced splitting of the conduction band valleys in Si, inter-valley scattering, and doping dependence. The dependence of the electron mobility components on the orientation of the underlying SiGe layer is taken into account by performing a transforma...

متن کامل

Compact Model Methodology for Dual-Stress Nitride Liner Films in a 90nm SOI ULSI Technology

R. Q. Williams, D. Chidambarrao*, J. H. McCullen, S. Narasimha*, T. G. Mitchell, D. Onsongo* IBM Corporation, Essex Junction, Vermont, USA *IBM Corporation, Hopewell Junction, New York, USA Email contact: [email protected] This work presents a novel methodology for a physically-based, layout-dependent nitride liner stress model that works with readily-available compact models. Nitride liner films ...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

River Flow Simulation Using SWAT Physically Based Model in Barandouzchay of Urmia Lake River Basin

Nowadays, there are too many models in the world for simulation of hydrological processes, such as the SWAT physically based model. The SWAT model is a continuous and physically based hydrologic model that is the smallest unit in this model is Hydrologic Response Unit, and all hydrological processes are simulated in each of these units. This model can simulate runoff, sedimentation, erosion and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007